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ABSTRACT 
 
 Optical beam pointing is a critical topic in the study of Directed Energy Weapons 

Systems.  One of the main operational concerns with optical beam pointing is the effect of small 

vibratory motion, defined as jitter.  Understanding jitter is important for minimizing the effect it 

has upon a directed energy beam’s intensity at its target.  In this project, Lagrange’s equations of 

motion are derived for a visco-elastic, point-supported plate containing discrete masses, which is 

representative of an optical platform.  The mechanical response of the optical platform is sought 

for free vibration, impact loading and the response imparted by two inertial actuators.  All three 

of these responses are then analyzed with and without damping.  A solution of these equations 

contains information pertaining to the plate’s amplitude and frequency, analyzed in both time 

and frequency domains, which together computes the effect of jitter on the intensity of a directed 

energy beam at the target.   
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NOMENCLATURE 
 
A  = amplitude 

c  = damping coefficient 

ccr  = critical damping 

E  = Elastic modulus (Young’s modulus) 

Hz  = cycles per second (Hertz) 

Ixx, Iyy, Ixy,… = mass moment of inertia 

k  = stiffness coefficient 

m  = mass 

N  = Force (Newton) 

P  = matrix of eigenvectors 

Pa  = Force per unit area (Pascal)  

R  = Rayleigh’s dissipation function 

r(t)  = displacement in modal space with respect to time 

S  = transformation matrix from modal space to original space 

t  = time 

T  = Period of oscillation 

T  = Kinetic Energy 

ζ   = damping ratio 

V         = Spring Energy 

ωd    = damped natural frequency 

ωn      = natural frequency 

ф     = phase 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1  Introduction 

 Directed energy systems have eluded researchers and engineers for decades due to the 

vast difficulties ranging from the basic physics of the system to modeling and system design.  

Advances in laser and control systems have proved fruitful towards solving these problems.  

Attention is now turning to other issues that affect the directed energy system.  One such 

challenge is to gain a better understanding of induced structural vibrations on the mechanical 

response of the structure that contains the directed energy system.  This vibration, termed jitter, 

has a measurable effect on the accuracy and intensity of the laser at its target.  A model capable 

of simulating the motion of an optical platform in various scenarios would greatly assist in the 

understanding of jitter effects and the mechanics behind the structural support system of the 

laser.  

 

1.2   Background  

 The optical laser system can be modeled as a multiple degree of freedom rigid body with 

attached discrete masses supported on visco-elastic springs.    One approach is to model it as a 

flexible body and, due to the support conditions, include rigid body modes.  Work on the 

vibration of deformable plates is mature and only an overview is presented here.   

 Cox and Boxer [1] provided one of the early contributions to this topic and discussed the 

vibration of a point supported plate at its corners and free edge boundaries elsewhere.  Both 

rotary inertia and shear effects were neglected for the plate.  A finite difference approach was 

used to solve the governing differential equation, and provided mode shapes and frequencies for 
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both square and rectangular plates.  Amba-Rao [2] studied the vibration of a simply-supported 

rectangular plate carrying a concentrated mass and presents a closed-form solution for the 

frequencies and mode shapes.  To develop the formulae for the frequencies, the transverse 

displacement was represented as a double infinite sine series.  Kerstens [3] incorporated a modal 

constraint method to solve the problem of vibration of a rectangular plate supported arbitrarily.  

The modal constraint approach used the principle of minimum potential energy, which included 

virtual work done by homogeneous boundary conditions. The point supports were represented 

through the virtual work by a homogenous boundary condition formed by finite constraints as 

point supports.  A Lagrange multiplier was used to represent the unknown forces.  The use of the 

Rayleigh-Ritz method continues to be a common approach for solving the eigenvalue problem 

associated with plate vibration.  Of particular interest was the selection of basis function used in 

the analysis.  Lee and Lee [4] incorporated a new class of admissible functions to study the 

vibration of elastically point supported plates.  The basis function corresponded to a similarly 

supported beam under point loads.  Singularity functions were used to completely describe the 

equation defining the elastic curve.  Normalized frequencies were presented for a plate simply 

supported on all sides and as a function of support location as well as elastic support stiffness.  

Kim and Dickerson [5] incorporate orthonormal polynomials as the basis functions in the 

Rayleigh-Ritz method to study the vibration of point supported plates with a combination of 

simply-supported and clamped edge conditions.   The orthronormal set was constructed using the 

Gramm-Schmidt process.  Kocaturk et al. [6] considered the dynamic response of a thin 

orthotropic plate supported on viscoelastic supports, which all had stiffness and damping 

properties.   The plate was subjected to harmonic input at its center and supported added masses.  

The arrangement of the masses was placed symmetrically along the diagonals of the plate.  A 
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Ritz method was used to compute the eigenparameters presented in the Lagrange’s equation of 

motion. Results were presented for several material constituents and considered symmetric 

modes of vibration consistent with geometry.  The authors also presented results for the force 

transmissibility as a function of plate material properties and added mass. 

 Of particular interest was experimental work that had been done in this area of 

investigation.  Although not as voluminous as numerical and analytical work, several 

contributions were noteworthy in literature.  Nieves [7] et al used laser interferometry to identify 

the flexural vibrations of thick isotropic plate.  The technique was said to consist solely of out-

of-plane displacement flexural modes.  Analytical results from the Ritz method were used as 

comparisons for accuracy.  A Mindlin plate theory was the basis for the analytical study 

presented.  Lee and Kam [8] considered the effect of elastic-edge supports on the vibration of 

composite plates as a means of determining the mechanical properties of a plate.    Impulse data 

provided the necessary frequencies to extract the mechanical properties.   

 Rigid body mechanics offered a much more suitable alternative in light of design, 

fabrication and construction of mounted systems aboard ships and aircraft.  In this approach, 

kinematic equations predicted motion leading to an understanding of the vibration response. 

 

1.3  Approach 

 The analysis of a vibrating system usually involved mathematical modeling, derivation of 

the governing equations, solution of the equations, and interpretation of the results.  A brief 

summary of each step follows.  More detailed descriptions are included in chapters (2-6).   

Step 1: Mathematical Modeling 
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  The purpose of mathematical modeling is to represent all the important features of 

the system for the purpose of deriving analytical equations governing the system’s 

behavior.  The mathematical model may be linear or nonlinear. 

Step 2:  Derivation of Governing Equations 

  Several approaches are commonly used to derive the governing equations of 

motion.  Among them are Newtonian Mechanics, Hamilton’s Principle, the Principle of 

Virtual Work, and Lagrange’s Equation.  When only single degree systems are 

considered, Newton’s law is useful, but in more practical problems with many degrees of 

freedom, energy considerations can be combined with the concepts of virtual work to 

produce Lagrange’s equations.  Lagrange’s equations provide an energy-based alternative 

to summing forces to derive equations of motion and are therefore used in this project. 

 Step 3:  Solution of the Governing Equations 

  The equations of motion must be solved to find the response of the vibrating 

system.  Depending on the nature of the problem, one of the following techniques may be 

used to find the solution: standard methods of solving differential equations, Laplace 

transform methods, matrix methods, and numerical methods.  The resulting problem for 

the vibration of the rigid problem is an eigenvalue problem.  Modal analysis is one 

approach to solve the associated eigenvalue problem using vector transformations.   

Step 4: Interpretation of the Results 

  The solution of the governing equations gives the displacements, velocities, and 

accelerations of the system’s various masses.  These results can be analyzed for possible 

design implications.  Accuracy of a model is determined by how well the solution of the 
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governing equations of motion predict the observed behaviors of the system presented in 

experimental results. 

   

1.4   Objectives 

 The objectives of this study were as follows: 

1. to model the optical platform as a rigid plate supported by elastic springs containing 

discrete masses  

2. to determine an exact differential of motions representing the kinematic model 

3. to determine its mechanical response for  free vibration, impact analysis, and forced 

vibration. 

4. to incorporate MATHEMATICA as the computation tool for analysis of the mechanical 

response-based method to analytically solve for the equations of motion 
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CHAPTER 2 

MODELING  

2.1  Introduction 

 This chapter introduces a brief overview of methods available to develop the equation of 

motions for rigid point supported plates in order to provide a framework of vibration; that is, to 

represent the physical problem mathematically.  Differential equations governing the forced 

vibration of a rigid point supported plate were then developed using Lagrange’s equation. By 

defining the plate’s motion in terms of generalized displacement parameters, one captured all six 

degrees of freedom in terms of three translations and three rotations.    

 Methods to represent or model physical problems all have their roots in dynamic 

equilibrium or Newton’s 2nd Law. For rigid bodies, two vectors equations given as  

            

           (2.1) 

where p takes on indices of  x, y, or z .  Here Ga  is the acceleration at the center of mass, m is the 

mass, Ip is the mass moment of inertia about the pth axis, and α the angular acceleration about the 

pth axis.  As the system became more complicated, establishing the vector required relationships 

in Newton’s approach became increasingly difficult and required a more concise approach.    

 As an alternative to this vector-based formulation, the method of principle virtual work 

was a scalar-based approach providing a shift in formulation from a Newtonian to a Lagrangian 

approach.  Problems in dynamics and vibration required introducing d’Alembert principle, since 

the principle of virtual work was essentially a variation principle for problems in statics 

coordinates used to define the degrees of freedom for the system.  Stated simply  

∑
∑
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 The total work performed by the effective forces through infinitesimal virtual   

 displacements compatible with the system constrains is zero. 

and mathematically is represented as 

           (2.2) 

In equation 2.2, irδ is a virtual displacement compatible with the constraints on the system.  

When deriving equations of motion, independent coordinates were preferred over system 

position variables, which lead to the definition of generalized coordinates and Lagrange’s 

Equations of Motion.  A complete derivation of Lagrange’s equations can be found in [9].  Here 

it is stated as 

           (2.3) 

where T is the system’s kinetic energy, V, the system’s potential energy, and R is defined as 

Rayleigh’s dissipation function and represents energy loss due to damping.  Also qi’s are 

generalized displacements and Qi’s are the corresponding generalized forces.  The term 

generalized is used to described translations or rotations as well as forces or moments.  

 

2.2 Kinematic Model Development 

 Lagrange’s equation of motion was the preferred approach to develop the differential 

equations of motion for the point supported plate.  To do so required a definition of the 

generalized displacements, and provided the starting point of kinematic analysis. 

 Figure 2.1 shows the experimental setup of the optical platform and all of its required 

instrumentation.   Two inertial actuators were mounted to provide forced motion in the vertical 

direction as well as to create angular rotations about the three cartesian axes.  As a consequence 

of the induced motions, displacements in the x and z directions were produced and accounted for 
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in the kinematic model.  Other elements included mounted brackets for optical sensors, laser 

beam, and sensors themselves.  Each element added mass and hence affected the mechanical 

response of the optical platform system.  Vibration isolators provided a mounting base for each 

of elastic four springs. 

 

Figure 2.1: Experimental Setup 

As such, the system was modeled as an elastically point supported plate containing discrete 

masses. The platform was taken to be a rigid body, which simulated the construct of the actual 

system in operation.   

 The developed kinematic model consisted of superimposed displacement in the x, y, and 

z directions.  Three two-dimensional representations were used to develop the total displacement 

expressions u{y,z}, v{x,z}and w{x,y} for the system consisting of a rigid platform and any 

number of discrete masses, depicted below as the kth masses. The cartesian coordinate system 

had been located at the geometric center of the plate, its centroid, and provided the means 

necessary to establish a relative position vector expression to locate movement in terms of 
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displacements given by {u0, v0, w0} and angular rotations given by {θx, θy, θz}.  The procedure 

used to develop the displacement expression is presented in equations (2.4) through (2.9). First 

consider figure 2.2, which shows kinematics relationships for the x-y plane.  All terms were 

considered positive.   The centroid displaced by u0 and v0, which represented the translation of 

the center of gravity.  In this plane, θz represented a positive rotation, and elements located in the 

positive x-y quadrant experienced displacements given by 

            (2.4) 

Combining translations and rotations provided 

            (2.5) 

 

Figure 2.2: Free Body Diagram in X-Y Plane 

The amplitude of motion experienced by the plate and its discrete elements were on the order of 

micrometers and micro-radians.  Using a small angle assumption resulted in  

            (2.6) 

jCosyySinxiSinyCosxxr zzzzGk
ˆ))}(()({ˆ)}()({/ θθθθ −−+−−=

jCosyySinxviSinyCosxxur zzzzk
ˆ))}(()({ˆ)}()({ 00 θθθθ −−++−−+=

jxviyur zzk
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Referring to figure 2.3 and making similar assumptions of displacement and rotation amplitudes, 

the position vector in the y-z plane was computed as       

            (2.7) 

The final contribution was determined by referring to figure 2.4, which represented motion in the 

x-z plane.  This became           

      (2.8) 

The total position vector now was determined by summing equations (2.5) to (2.8) producing  

            (2.9) 

where 

      (2.10) 

 

Care was taken to not account for contributions more than once. 

 

 

 

Figure 2.3:  Free Body Diagram in Y-Z Plane 
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Equation (2.10) is the displacement equation required for Lagrange’s equation.  

 

Figure 2.4:  Free Body Diagram in X-Z Plane 

 

2.3  Dynamic Model Development 

 Figure 2.5 shows a planar view of dynamic model that represented the optical platform.  

The actual system had two mounted actuators oriented 45˚ relative to the horizontal. Each 

inertial actuator had been modeled as an equivalent mass-spring-damper system with stiffness ksi 

and damping coefficient csi .  Here mtop was the portion of the actuator’s mass in motion and 

mbase was the remaining mass for the actuator.  Discrete masses were represented by the kth mass.   

Experimental testing of the system’s support springs revealed that, although geometrically 

similar, measured spring stiffnesses could vary by as much as 30%.   To account for this 

variation, spring stiffnesses and damping coefficients were all labeled differently as ki and ci .   
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Figure 2.5:  Side view of a Platform with Discrete Mass and Actuator 

 Expression for the kinetic energy, potential energy and Rayleigh Dissipation function for 

each inertial actuator were given by          

            (2.11) 

 

            (2.12) 

 

 

            (2.13) 

 

and expressions for the kinetic energy, potential energy, and Rayleigh’s Dissipation function for 

the plate were given as 
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Substitution of equations (2.12) through (2.15) into (2.3) yielded the coupled equations of motion 

represented in matrix form as 

 

            (2.15) 

 

 

The explicit equations were quite lengthy and can be referenced in Appendix A -1 and appendix 

A-2, which provide sub-matrices used in eqn.(2-15).  The above subscripts s and p in eqn. (2.16) 

correspond to the shaker and plate, respectively.  Also, the vectors of generalized coordinates are 

defined as  

  

             

            (2.16) 

      

 

This set of equations is coupled both statically and dynamically, representing damped forced 

vibration analysis.   Initial condition must be appended to eqn (2.15), which consisted of initial 

displacement and initial velocities.   

Equation (2.15) was specialized based upon the type of vibration analysis investigated.  

Initial conditions can also be presented.  For free damped vibration analysis, eqn. (2-15) reduced 

to 

            (2.17) 
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with initial conditions of  

   

  

            (2.18) 

 

              

Although initial velocity was possible, only displacement conditions were presented to reflect the 

reality of inducing such initial conditions in a laboratory setting.  Equation (2.17) also governed 

impact analysis.  However, the accompanying set of initial conditions were 

             

             

  

 

 

These initial conditions were computed from changes in both linear and angular momentum of 

the plate just before impact and immediately after impact, given by 

 
 
 
 
 
       (2.19) 
 
 
 
 
 
The impact location did have an effect on the initial conditions. A plate impacted in its center 

resulted only in changes in linear momentum and not angular momentum. 
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 Finally, steady-state forced vibration analysis for the system was considered.  No initial 

conditions were required. 
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CHAPTER 3 

MODAL ANALYSIS 

3.1  Modal Analysis 

 In this chapter an overview of the solution strategy, modal analysis, is presented and used 

to solve the mechanical response in light of the complicated structure of the governing equations.  

The equations of dynamic equilibrium were coupled both statically and dynamically and, with 

the presence of damping, did not render a decoupled system unless certain conditions existed 

between the stiffness, damping and mass matrices. 

 There were many ways to decouple eqn. (2.15) based upon the existing type coupling 

construct.  Consider the two-degree of freedom, coupled system, given by 

            

 (3.1) 

or in matrix form as 

            (3.2) 

Now simplify the equations to consider an undamped problem with m12 = m21 = 0, a system 

coupled by virtue of the stiffness elements only. Since the mass matrix is now diagonal, a 

coordinate transformation, defined as  

            (3.3) 

produces  

            (3.4) 
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where 

      

            (3.6) 

 

In eqn. (3.5), ]ˆ[k  is the mass normalized stiffness matrix and [I] is the identity matrix.  The 

modal transformation matrix is accomplished by determining the matrix of eigenvectors 

corresponding to eqn. (3.5), identified here as [P], defining a modal coordinate system {r} 

through the transformation of {q} = [P]{r}, and incorporating this transformation into eqn. (3.4).  

Doing so produces 

(3.7) 

and pre-multiplying by [P]T yields a decoupled system of equations of  

            (3.8) 

where 

(3.9) 

 

Eqn (3.8) was solved directly.  The solution to the required problem was obtained after the 

solution in modal space was transformed back to the original coordinate system using the modal 

transformation given by  

(3.10) 

where  

(3.11) 
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transformation defined through eqn. (3.3) is not the most efficient method for this type of 

problem.  Rather, a Cholesky Decomposition is the preferred strategy.   

 The Cholesky Decomposition, L, produces a lower triangular matrix that satisfies the 

matrix product of [m] = [L][L]T.  Most of the context presented will hold for this coordinate 

transformation, defined as  

            (3.12) 

which produces  

            (3.13) 

Pre-multiplying eqn.(3.7) by 1][ −L  yields 

            (3.14) 

where 

      

            (3.15) 

 

The eigenvector matrix [P] can now be determined, and the modal transformation matrix [S] 

required is defined through 

(3.16) 

where  

 (3.17) 

 

Damping complicated the process in several ways. First, it was challenging to measure, and 

secondly, with damping present, there were no assurances that the matrix of eigenvectors would 
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diagonalize the damping matrix, thus decoupling the system.  Caugley and O’Kelly [13] have 

shown exactly that. 

 

            (3.18) 

 

Whenever eqn. (3.18) does not hold, then a proportional damping model is recommended in 

which the damping matrix [c] can be expressed as a linear combination of the mass and stiffness 

matrix gven by 

          (3.19) 

Constants α and β were selected to produce a desired damping ratio, based upon experimental 

results or design considerations. 

 Since the damping is mode dependent, the damping ratio is given as  
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CHAPTER 4 

FREE VIBRATION 
 

4.1   Introduction 
 
 This chapter presents the free vibration analysis of the system.  Equation (2.17) and 

(2.18) were solved based upon the discussion in chapter 3.  Required in the analysis were all of 

the system properties.  The mass or the platform and discrete elements were weighted and 

recorded.  Data from the manufacturer of the support springs indicated the same spring stiffness.  

However, experimental results for the spring stiffnesses indicated stiffness coefficients that 

varied as much as 30 percent.  Free vibration case studies were investigated, which vary spring 

stiffness, discrete mass amount and location, and in the case of damping, damping ratios.  Target 

displacement plots were plots that map the plate’s motion onto a plane located a set distance 

away from the center of the plate, and presented a visual viewpoint of the platform’s local 

motion.  All results computed herein were performed using MATHEMATICA®. 

 Figure 4.1 shows the topology of stiffness and masses used in the vibration studies.  The 

coordinate system was placed at the centroid.  The plate had geometry of 36 in x 36 in x 2 in. 

with a density of 0.016 lb/in3.   The springs were mounted at fixed coordinates as listed in Table 

4.1. 
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Figure 4.1:  Mass, Stiffness, and Damping Coefficient Distribution 

 
 
 
Parametric evaluation of the effect of spring stiffness, discrete mass composition and discrete 

mass location values were established in Tables 4.1 through 4.4.  Table 4.1 shows the fixed 

location of the support springs while Table 4.2 presents the spring stiffnesses used.  Table 4.3 

presents the discrete masses used in the study, and Table 4.4 shows how the masses were 

distributed on the plate.  A systematic notation to identify what type of vibration was considered, 

the value of stiffnesses used, the location of the discrete masses, and the amount of each discrete 

mass is given as  

 

 

where V identifies the type of vibration problem as FR for free vibration, IM for impact analysis 

and FF for forced vibration.  For example, IM-K1-M2-L3 identifies an impact analysis using 

equal spring stiffnesses with equal masses distributed randomly over the plate’s area.  In the case 

of no added mass, the mass location index was omitted and would append as V-Ki-M i. 

 

{ { { {
LocationMass

I

CaseMass

I

CaseStiffness

I
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Table 4.1 Spring Coordinate Location 

 
Cartesian Coordinates  Spring 

 Number x (in)  y (in)    z (in)  
1 17.25 -1 17.25 
2 -17.25 -1 17.25 
3 -17.25 -1 -17.25 
4 17.25 -1 -17.25 

 
 

 
Table 4.2 Spring Stiffnesses  

 
Case Study  Spring 

Stiffness (lb/in) 1 2 3 4 5 
k1 115 115 115 110 115 
k2 115 110 115 110 110 
k3 115 110 110 115 120 
k4 115 115 110 115 100 

 
 

 
Table 4.3 Discrete Masses 

 
Case Study  

Mass (slugs) 
1 2 3 4 5 6 

m1 0.0 0.155 0.155 0.155 0.078 0.155 
m2 0.0 0.155 0.078 0.155 0.155 0.078 
m3 0.0 0.155 0.078 0.078 0.078 0.0 
m4 0.0 0.155 0.155 0.078 0.155 0.233 

 
 
 

Table 4.4 Discrete Mass Location  
 
Case Study  

Location 
(x1,z1) (x2,z2) (x3,z3) (x4,z4) 

l1 (9,9) (12,12) (12,12) (9,9) 
l2 (-9,9) (6,6) (12,6) (-12,12) 
l3 (-9,-9) (12,-6) (6,6) (-15,-5) 
l4 (9,-9) (6,-12) (6,12) (6,-6) 
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4.2   Free Vibration Analysis 
 
 Free vibration analysis was governed by eqns. (2.17) and (2.18). Results consisted of 

natural frequencies, displacement and rotation results, and target plots for various types of initial 

conditions.  Initial conditions consisted of non-zero generalized displacements and zero 

generalized velocities.   

 Figure 4.2 shows results for displacements and rotations for FR-K1-M1 with an initial 

displacement of 0.01 ft in the x-direction only.  Natural frequencies of this case were  

ω1 = ω2 = 5.464 Hz,  ω3 = 5.478 Hz,  ω4 = 9.094 Hz, ω5 = ω6 = 9.104 Hz.  Modes 1 and 2 

correspond to the in-plane modes, mode 3 is the transverse mode, mode 4 corresponded to the 

yaw mode, and modes 5 and 6 corresponded to the rotational modes.  The non-zero displacement 

was )(0 tu and the only non-zero rotation was (t)zθ .  These expressions were 

     (4.1) 

        

Both motions were in-phase with each other. 
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Figure 4.2 Displacement plots for free vibration equal stiffnesses, no added masses. 
                 with initial condition of u0(0) = 0.01 ft. 
         
Changing the stiffness case to case 5, or evaluating FR-K5-M1 for the same initial condition, 

highlighted the effect of unequal spring stiffness and static coupling on the motion of the 

platform.    All displacements and angular rotations grew harmonically with the exception of 

u0(t).  This induced motion exhibited a beating phenomena characterized by a slow variation in 

amplitude with rapid oscillations.   

Clearly based upon spring stiffnesses, two types of motions exist.  The first is identified 

as direct motion consistant with initial conditions and the second is indused motion based upon 

system properties.  Another noticeable result was that the natural frequencies separated to ω1 = 

5.402 Hz, ω2  = 5.404 Hz,  ω3 = 5.418 Hz,  ω4 = 8.804 Hz, ω5 = 8.996 Hz, ω6 = 9.202 Hz. 
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Figure 4.3 Displacement plots for free vibration unequal stiffnesses, no added masses 
                           with initial condition of u0(0) = 0.01 ft. 
 
 
Expressions for the displacements highlighted the coupling effects and were given as  
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            (4.3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4 shows the results for initial conditions of u0 (0) = 0.01 ft, v0(0) = -0.01 ft and w0(0) = 

0.01 ft, with all other initial conditions equal to zero, since it is more difficult to prescribe 

angular position than displacements.  Here notice that u0 and w0 move in-phase while θy and θz 

move in-phase. 
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Figure 4.4 Displacement plots for free vibration unequal stiffnesses, no added masses 
                           with initial condition of u0(0) = 0.01 ft, v0(0) = -0.01 ft, w0(0) = 0.01 ft 
 
 Below are target plots, which represent a two-dimensional projection of the motion of the 

platform and gave an indication of how the motions increased with distance and provided a 

visual perspective of the platform’s motion.    Here the distance was 14 ft from the center of the 

plate.  Figure 4.5a corresponded to FR-K1-M1 and figure 4.5b corresponded to FR-K5-M1.
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Figure 4.5 Target Plots for equal and unequal spring stiffness and no added discrete mass.  
 
 
Adding mass reduced the natural frequency of the system, as well as the displacement 

amplitudes.  Increasing the mass at points not co-located with the centroid affected rotational 

modes of vibration.  Take, for example, the case identified as FR-K1-M2-L1, which added equal 

discrete mass of 0.155 slugs at the center of each quadrant.  The natural frequencies were ω1 = ω2 

= 5.114Hz, ω3 = 5.147 Hz,  ω4 = ω5 = 9.104 Hz,  and ω6 = 8.672 Hz.  Modes 1 and 2 

corresponded to the in-plane modes, mode 3 was the transverse mode, mode 4 and 5 were the 

rotational modes, and mode 6 was the yaw mode.  Here there was a shift in higher rotational 

modes.   An interesting scenario was the case of unequal stiffness, with added unequal discrete 
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masses not arranged in a symmetric pattern about the origin, as depicted by FR-K5-M6-L4.  This 

resulted in natural frequencies that were all unique given by:  ω1 = 5.047 Hz, ω2 = 5.055Hz, ω3 = 

5.0885 Hz,  ω4 = 8.324 Hz, ω5 = 8.498 Hz,  and ω6 = 8.557 Hz. Displacement plots are shown  in 

figure 4.5, and its target plot is presented in 4.6. 
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      Figure 4.6 Displacement plots for free vibration unequal stiffnesses, added unequal discrete  
  masses with initial condition of v0(0) = -0.01ft 
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Figure 4.7 Target Plot for unequal spring stiffness and added discrete mass.  
 
 
4.3  Free Vibration, Damped Analysis 

 
 In this section, damping was included in the vibration analysis and represented using a 

proportional damping model as presented in eqn. (3.20).  Initial conditions selected were similar 

to those used previously.  Several combinations of constants α and β were computed in order to 

yield realistic damping ratios.  Results presented in this section followed a pattern similar to the 

results presented in the previous section.  

 Table 4.5 compares values of natural frequency ωn, damped natural frequency ωd, and 

damping ratio ζ based upon proportional damping constants α and β.  Damping ratios of the 

order of 1 to 2 % are realistic and provide a framework for selecting proportional constants.  For 

convenience these constants were taken to be 0.0007812 for damped free vibration, although any 
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set can be chosen based upon performance and design considerations.  These values provided a 

maximum damping ratio of 2.23%.  

 
 

Table 4.5 Natural Frequency, damped natural frequency and damping ratio as function of                                                                                              
proportion constants α and β 

 
 

α = 0.0125  
 β = 0.0125  

 

 
α = 0.00625  
β = 0.00625  

 

 
α = 0.003125  
 β = 0.003125  

 
Mode 

ωn  ωd ζ ωn ωd ζ ωn ωd ζ 
1 5.464 4.842 0.215 5.464 5.163 0.107 5.464 5.315 0.0537 
2 5.464 4.842 0.215 5.464 5.163 0.107 5.464 5.315 0.0537 
3 5.478 4.853 0.215 5.478 5.176 0.108 5.478 5.329 0.0538 
4 9.094 7.291 0.357 9.094 8.242 0.179 9.094 8.678 0.0893 
5 9.104 7.291 0.357 9.104 8.250 0.179 9.104 8.687 0.0894 
6 9.104 7.297 0.357 9.104 8.250 0.179 9.104 8.687 0.0894 

 
α = 0.001562   
β = 0.001562 

 

 
α = 0.0007812    
β = 0.0007812 

 

 
α = 0.000390  
β = 0.000390 

 
Mode 

ωn ωd ζ ωn ωd ζ ωn ωd ζ 
1 5.464 5.390 0.0268 5.464 5.427 0.0134 5.464 5.446 0.0067 
2 5.464 5.390 0.0268 5.464 5.427 0.0134 5.464 5.446 0.0067 
3 5.478 5.404 0.0269 5.478 5.441 0.0134 5.478 5.460 0.0067 
4 9.094 8.888 0.0446 9.094 8.992 0.0223 9.094 9.043 0.0111 
5 9.104 8.898 0.0447 9.104 9.001 0.0223 9.104 9.053 0.0111 
6 9.104 8.898 0.0447 9.104 9.001 0.0223 9.104 9.053 0.0111 

 
 
 
The presence of damping in the vibration model resulted in a characteristic equation, which 

contained complex roots.  The displacement expressions presented in eqn. (4.4) reflected this fact 

and were used to generate figure 4.8 for the case of FR-K1-M1.  Here the plate was given an 

initial displacement in the x direction only. Damped natural frequencies were given as ωd1 = ωd2 

= 5.437 Hz, ωd3 = 5.442 Hz, ωd3 = 8.992 Hz, ωd5 = ωd6 =8.708 Hz.  Figure 4.9 is the target plot 
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and shows that the density of the plot trace became more concentrated near its origin as time 

increased, which reflected the effect of damping.  

 
 
            (4.4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.8 Displacement plots for free vibration unequal stiffnesses, no added masses with initial   

condition of u0(0) = 0.01ft. 
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Figure 4.9 Target plot for equal stiffness, no added discrete mass damped vibration.  
 

If the spring stiffness case changed to case 5 or  FR-K5-M1, the solution for the six generalized 

displacements were given in eqns. (4.5) and (4.6).  The corresponding damped natural 

frequencies were all distinct, with values of ωd1 = 5.366 Hz, ωd2 = 5.368 Hz, ωd3 = 5.382 Hz, ωd4 

= 8.708 Hz, ωd5 = 8.895 Hz,  ωd6 = 9.907 Hz.  
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            (4.6) 

Figure 4.10 shows the displacement as a function of time using α and β = 0.0007812.  Both u0 

and v0 were more dominant in respect to displacement magnitudes, since w0 was on the order of 

10-5, while θy, on the order of 10-6, was less significant when comparing the angular rotations.   

 The selection of constants α and β was based upon a desire to have a maximum damping 

ratio of approximately 2%.  Increasing the constants raised ζ to a maximum of 4% which 

dampened out motions somewhat faster as shown in figure 4.12.  There was a change in the 

damped frequencies to ωd1 = 5.037 Hz, ωd2 = 5.3039 Hz, ωd3 = 5.052 Hz, ωd4 = 8.610 Hz, ωd5 = 

8.795 Hz, and ωd6 = 8.990 Hz.    
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Figure 4.10. Displacement plots for free vibration, damped  unequal stiffnesses, no added    
discrete masses with initial condition of u0(0) = 0.01ft with α = 0.0007812, β = 0.0007812 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11 Target Plot for unequal spring stiffness and no added discrete mass (damped 
vibration). 
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Figure 4.12 Displacement plots for free vibration unequal stiffnesses, added discrete          

masses with initial condition of u0(0) = 0.01ft with α = 0.001562, β = 0.001562 
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CHAPTER 5 
IMPACT ANALYSIS 

 
5.1  Introduction 
 
 Before moving onto forced vibration, some results are presented for impact analysis.  

Impact analysis had the same governing differential equations as free vibration, but here velocity 

and angular velocity initial conditions were prescribed instead of displacements and angular 

rotations.  These conditions corresponded to a change in both linear and angular momentum due 

to impulsive forces and moments, expressed in eqn. (2.19). The impact response depended upon 

impact location and mass of the impacting hammer.  Generalized displacement results are 

presented for several impact points on the plate using and impacting hammer of about 10 lb. 

These results were generated for a plate with unequal spring stiffnesses, discrete masses arranged 

arbitrarily, and damping, which is case IM-K5-M6-L4 

 To evaluate the initial conditions required the duration of the impact event and its 

intensity.  For a constant impact force, eqn. (2.19) evaluates to  

 

 

         

           (5.1) 

 

where Fave is the average impact force intensity, and ∆t is the time of the impact.  For this 

analysis the impact intensity of 10 lb for a duration of 0.02 secs was used.  Impact analysis does 

not necessary start at time t = 0 secs. With the use of the kronecker delta function δ, this delay 

was readily incorporated.  Table 5.1 provided locations where the impact would take place. 

These locations were not unique and represented any number of combinations of coordinates 
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where an impact could take place.  Impact locations along the z-axis produced target plots that 

were essentially vertical.  The nomenclature introduced in chapter three for tracking vibration 

cases is augmented here to track impact location.  The new notation introduces Pi.  P1 in the case 

IM-K 5-M6-L4-P1 specifies the impact point to correspond to that presented in table 5.1.  All 

parameters presented for damped analysis are maintained here. 

 
Table 5.1 Impact Location  Placement  

 

Location (x1,z1) 

P1 (0,0) 
P2 (18,0) 
P3 (-18,0) 

 

The case considered for impact analysis was IM-K5-M6-L4-Pi .  The initial conditions were 

v0(0
+) = -0.0382848 ft/s, θx(0

+) = 0.0 rad/s and θz(0
+)  = 0.0753376 rad/s.  The solution of 

eqn.(2.17) was 
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            (5.2)
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(5.3) 

 

 

 

 

 

 

 

with the natural frequencies of ωn1 = 5.0807 Hz, ωn2 = 5.0851 Hz, ωn3 = 5.1117 Hz,  ωn4 =  8.4179 

Hz,  ωn5 =  8.5427 Hz, ωn6 = 8.5607 Hz, and the damped natural frequencies of ωd1 = 5.0489 Hz, 

ωd2 = 5.0532 Hz, ωd3 = 5.0847 Hz, ωd4 = 8.3304 Hz,  ωd5 = 8.4526 Hz, and ωd6 = 8.4702 Hz.  

Figure 5.1 presents plots of displacement vs. time.  In these graphs, displacements v0 and w0 

moved in-phase while angular rotations θx and θz motions were in-phase with the magnitude of 

θy.  However, θy was two orders of magnitude smaller than either θx or θz. Figure 5.2 provides 

the target plot for this case showing the effect of angular rotations θx and θz on this traced 

displacement.  Figure 5.3 and 5.4 and figures 5.5 and 5.6 are displacement-target plot sets for 

impact locations at P2 and P3, respectively.  
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Figure 5.1 Displacement plots for impact unequal stiffnesses, added discrete with α = 0.001562, 
β = 0.001562 

 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2 Target plot for impact analysis with impact located at the origin. 
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Figure 5.3 Displacement plots for impact at location P2 
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Figure 5.4 Target plot for impact at location P2 
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Figure 5.5 Displacement plots for impact at location P3 
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Figure 5.6 Target plot for impact at location P3 
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CHAPTER 6 

FORCED VIBRATION 

 6.1  Introduction 

 In this chapter, forced vibration analysis of the platform system is presented.  Unlike 

previous results, the forcing function was constantly applied to the system, which produced both 

a transient and steady state solution.  Also unlike the previous discussions, the governing 

equations of motion included representations of the forcing functions, depicted as inertial 

actuators.  This inclusion expanded the system of governing equations from six degrees to as 

many as ten degrees of freedom.  The equations of motion were solved for the steady-state 

solutions since previous results captured transient results.   

 Two inertial actuators are typical for the optical platform, and each is modeled as a 

second order system.   These actuators were placed and oriented in such a way to generate in-

plane displacement u0, transverse displacement v0, and all three angular rotations.  The forcing 

function was represented as a single harmonic function such as )()( 111 tSinFtF ω= or a linear 

combination of multiple harmonic functions such as 

)()()()( 222211 tSinFtSinFtSinFtF ωωω ++= .  Both cases were considered here.  Since the 

problem was linear in nature, displacement solutions for the case of multiple frequency forcing 

function were obtained through a superposition of the displacement solution at each forcing 

frequency.  Results presented here considered the case of unequal stiffenesses with added 

discrete masses arbitrarily located on the plate.  

 Refer to chapter 4 on free vibration for an explanation of the systematic notation used 

within this chapter to identify which stiffness, mass composition, and mass location cases are 

used in each study.  These variables follow the pattern outlined in tables 4.1 through 4.4. 
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6.2  Forced Vibration Analysis 

 Forced vibration of the platform used two actuators whose forcing functions were given 

by 

             (6.1) 

Forcing function F1(t) was oriented 45˚ relative to the horizontal, and F2(t) was oriented in the 

vertical position only.  The equations that governed steady-state forced vibration were given by 

(2.17).  These equations are shown in complete detail in Appendix A-1.  A modal solution 

approach was used to decouple the problem, solve it in modal coordinates, and transform it back 

to the original coordinate system to obtain the solution of the original problem.  The system 

investigated was FF-K5-M6-L4.  The constants α and β used for the damping ratio were 

0.0007812.  With forcing functions given by eqn. (6.1) and system properties given, the steady 

state solutions consisted of natural frequencies of  ωn1 = 4.9414 Hz, ωn2 = 6.4366 Hz, ωn3 = 

7.2966 Hz,  ωn4 =  8.5514 Hz,  ωn5 =  8.6176 Hz, ωn6 = 9.2568 Hz and  damped natural of  ωd1 = 

4.9114 Hz, ωd2 = 6.3855 Hz, ωd3 = 7.2310, ωd4 = 8.4612 Hz, ωd5 = 8.5259 Hz, ωd6 = 9.1511 Hz.  

The displacement equations became 
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u0(t) = 1.00406×10-6 Sin[0.0121293 -75 t] - 0.000321209 Sin[0.0240309 -75 t]   

 +1.31285×10-6 Sin[0.0349573 -75 t]-5.42389×10-7 Sin[0.0617196 -75 t] 

 -9.55247×10-6 Sin[0.0637154 -75 t]+5.38026×10-6 Sin[0.0881979 -75 t] 

 +4.3727×10-6 Sin[0.0198073 +25 t]-5.81755×10-7 Sin[0.0198115 +25 t]  (6.2) 

 -5.26029×10-6 Sin[0.0198166 +25 t]-1.62503×10-7 Sin[0.0239584 +25 t] 

 -0.0000139863 Sin[0.0248248 +25 t]-2.58145×10-6 Sin[0.0249298 +25 t] 

 +6.37135×10-7 Sin[0.0278009 +25 t]+0.0000994562 Sin[0.0316172 +25 t] 

 -0.0000191568 Sin[0.0555397 +25 t]+2.53003×10-6 Sin[0.0670112 +75 t] 

 -0.0000395334 Sin[0.0671549 +75 t]+3.24891×10-6 Sin[0.0673307 +75 t] 

v0(t) = 0.000279697 Sin[0.0121293 -75 t]+1.00761×10-6 Sin[0.0240309 -75 t] 

 -1.94145×10-6 Sin[0.0349573 -75 t]-2.69454×10-7 Sin[0.0617196 -75 t] 

 -8.67708×10-7 Sin[0.0637154 -75 t]-8.28308×10-6 Sin[0.0881979 -75 t] 

 +0.0000409697 Sin[0.0198073 +25 t]+1.43775×10-7 Sin[0.0198115 +25 t]    (6.3)  

 +5.30289×10-7 Sin[0.0198166 +25 t]+2.50179×10-7 Sin[0.0239584 +25 t] 

 -1.27046×10-6 Sin[0.0248248 +25 t]-1.28244×10-6 Sin[0.0249298 +25 t] 

 -9.42197×10-7 Sin[0.0278009 +25 t]-3.11986×10-7 Sin[0.0316172 +25 t] 

 -0.00533642 Sin[0.0555397 +25 t]+0.0000237049 Sin[0.0670112 +75 t] 

 +9.77027×10-6 Sin[0.0671549 +75 t]-3.27522×10-7 Sin[0.0673307 +75 t] 
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w0(t)=-1.44417×10-6 Sin[0.0121293 -75 t]-1.82636×10-6 Sin[0.0240309 -75 t] 

 -0.0000923278 Sin[0.0349573 -75 t]-2.91666×10-7 Sin[0.0617196 -75 t] 

 +0.0000194523 Sin[0.0637154 -75 t]+0.000115661 Sin[0.0881979 -75 t] 

 -4.19896×10-7 Sin[0.0198073 +25 t]-2.37918×10-9 Sin[0.0198115 +25 t] 

 +5.15085×10-7 Sin[0.0198166 +25 t]-3.49338×10-6 Sin[0.0239584 +25 t]  (6.4) 

 +0.000028481 Sin[0.0248248 +25 t]-1.38816×10-6 Sin[0.0249298 +25 t] 

 -0.0000448072 Sin[0.0278009 +25 t]+5.65496×10-7 Sin[0.0316172 +25t] 

 +0.0000275536 Sin[0.0555397 +25 t]-2.4295×10-7 Sin[0.0670112 +75 t] 

 -1.61678×10-7 Sin[0.0671549 +75 t]-3.18132×10-7 Sin[0.0673307 +75 t] 

θx(t)= 4.60572×10-6 Sin[0.0121293 -75 t]-2.07747×10-6 Sin[0.0240309 -75 t] 

 +0.0000448641 Sin[0.0349573 -75 t]+7.71136×10-6 Sin[0.0617196 -75 t] 

 +8.16241×10-6 Sin[0.0637154 -75 t]+0.000256036 Sin[0.0881979 -75 t] 

 +0.0000109739 Sin[0.0198073 +25 t]+8.90035×10-8 Sin[0.0198115 +25 t]  (6.5) 

 -0.000013611 Sin[0.0198166 +25 t]-7.7332×10-6 Sin[0.0239584 +25 t] 

 +0.000011951 Sin[0.0248248 +25 t]+0.0000367015 Sin[0.0249298 +25t] 

 +0.0000217728 Sin[0.0278009 +25 t]+6.43246×10-7 Sin[0.0316172 +25 t] 

 -0.0000878739 Sin[0.0555397 +25 t]+6.34946×10-6 Sin[0.0670112 +75 t] 

 +6.04827×10-6 Sin[0.0671549 +75 t]+8.40657×10-6 Sin[0.0673307 +75 t] 
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θy(t)=-2.82214×10-8 Sin[0.0121293 -75 t]+6.7708×10-6 Sin[0.0240309 -75 t] 

 +0.0000196566 Sin[0.0349573 -75 t]-8.9916×10-6 Sin[0.0617196 -75 t] 

 +0.0000263297 Sin[0.0637154 -75 t]+0.000111047 Sin[0.0881979 -75 t] 

 -1.41948×10-6 Sin[0.0198073 +25 t]+1.76317×10-7 Sin[0.0198115 +25 t] 

 +1.40466×10-6 Sin[0.0198166 +25 t]-3.35401×10-6 Sin[0.0239584 +25 t]      (6.6) 

 +0.0000385506 Sin[0.0248248 +25 t]-0.0000427947 Sin[0.0249298 +25 t] 

 +9.53946×10-6 Sin[0.0278009 +25 t]-2.09645×10-6 Sin[0.0316172 +25 t] 

 +5.38444×10-7 Sin[0.0555397 +25 t]-8.21303×10-7 Sin[0.0670112 +75 t] 

 +0.0000119817 Sin[0.0671549 +75 t]-8.67559×10-7 Sin[0.0673307 +75 t] 

θz(t)= 4.69373×10-6 Sin[0.0121293 -75 t]-0.0000375903 Sin[0.0240309 -75 t] 

 +4.25126×10-6 Sin[0.0349573 -75 t]+1.42329×10-6 Sin[0.0617196 -75 t] 

 +0.000331645 Sin[0.0637154 -75 t]-0.0000274044 Sin[0.0881979 -75 t] 

 -0.0000150431 Sin[0.0198073 +25 t]+3.08941×10-7 Sin[0.0198115 +25 t] 

 -0.0000113176 Sin[0.0198166 +25 t]+8.27713×10-7 Sin[0.0239584 +25 t]  (6.7) 

 +0.000485579 Sin[0.0248248 +25 t]+6.77404×10-6 Sin[0.0249298 +25 t] 

 +2.06316×10-6 Sin[0.0278009 +25 t]+0.0000116391 Sin[0.0316172 +25 t] 

 -0.000089553 Sin[0.0555397 +25 t]-8.70387×10-6 Sin[0.0670112 +75 t] 

 +0.0000209942 Sin[0.0671549 +75 t]+6.9901×10-6 Sin[0.0673307 +75 t] 

Although long and tedious, the solutions contained no more than seven combinations of the Sine 

function at each frequency and a phase angle.  These equations were plotted in figure 6.1.  Most 

notable was the slowing period of oscillation in displacement v0(t) and rapid oscillation in θz(t). 
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 Figure 6.2 shows the same input information with the exception that the frequencies were 

exchanged.  With these changes it was possible to assess the effect of the actuator orientation on 

the motion of the platform.  By comparing Figures 6.1 and 6.2 it was seen that the actuator 

oriented at 45˚ dominates the motion when forcing amplitudes were equal.  Figure 6.3 shows the 

displacement results using same frequency of 25 rad/s.  In-plane displacement w0 was relatively 

small when compared to the other two components.  Also, rotations θx and θy were in-phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Displacement plots with F1(t) = 10 Sin(75t) at 45˚ 
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Figure 6.2 Displacement plots with F1(t) = 10 Sin(25t) at 45˚ 
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Figure 6.3 Displacement plots with F1(t) = F2(t) =10 Sin(25t) at 45˚   
 

By considering that the forcing functions were linear combinations of harmonic functions, given 
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            (6.9) 

 

Here N is taken as 7, all of the magnitudes Aki equal, and random choices of frequency were 

taken, which produced the following forcing functions 

)]22.60()93.47()99.41()76.32()88.24()77.21()09.11([10)(
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++++++=
++++++=

 

Figures 6.4 and 6.5 show time history plots of forcing functions F1 and F2. 
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Figure 6.4 Plot of forcing function F1(t)  
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    Figure 6.5 Plot of forcing function F2(t) 
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The solution process for this case merely required a superimposed solution in modal space and a 

modal transformation back to the original coordinate system. The results were quite lengthy and 

shown only graphically below in figure 6.6 

 

             

             

             

             

 

 

 

 

 

 

 

 

 

Figure 6.6 Displacement plot for multiple frequency forcing functions 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 This project studied the analysis of an optical platform modeled as an elastically point 

supported plate containing discrete mass.  The study consisted of free vibration, impact analysis 

and force vibration.  Both undamped and damped cases were considered, where the damped 

cases were modeled using proportional damping.   

1. Dynamic vibration equations of equilibrium were derived using Lagrange’s Equation. 

2. Undamped and damped analysis was considered 

3. Two types of motion can result – Direct motion due to initial conditions and induced 

motion  due to system characteristics.  Induced motion resembles vibrational beating 

– slow amplitude changes with rapid oscillations.   

4. Equal spring stiffness results in harmonic motion, without beating phenomena 

5. Unequal spring stiffnesses induce motion in other directions  

6. Unequal spring stiffnesses separate modes of vibration 

7. Added masses reduce frequencies 

8. Target plot density is greater with equal spring stiff nesses than when unequal.  

9. Explicit expressions for all kinematic variables are known, leading to computation of 

velocities (linear and angular), acceleartions (linear and angular) at any point on the 

plate. 

10. All experimental results can be compared with analytical results 

 

There are several ideas that can be considered to extend the work of this project. 

1. Compare analytical results with experimental results 
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2. Understand strategy to distribute force intensity for multiple frequency case 

3. Develop state space representation for future control applications 

4. Incorporate modeling of devices such as fast steering mirror, etc. 
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APPENDIX A1 

EXPLICIT EQUATIONS 

 
 
A1.1  Coupled Dynamic Equation for Inertial Actuators 
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A1.2  Coupled Dynamic Equations for Optical Platform 
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APPENDIX A2 

SUB MATRICIES 

A2.1   Introduction 

 This appendix presents explicit forms of the matrices used.   Recall that Lagrange’s 

Equation provides a means of obtaining a system’s governing equations of motion, which in 

matrix form become  

(A2.1) 

Each matrix in eqn. A2.1 is subdivided into four matrices,   

 

 

  (2.16) 
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 The above defined matrices for the shaker are  

 

 

 

 

 

 

 

 

 

 

 

Here s1 and s2 stand for shaker 1 and 2 and t represents the portion of the mass of the shaker in 

motion.  The matrices that couple the motion of the shaker and the plate are  
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The matrices that govern the motion of the plate are 
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APPENDIX B1 

MATHEMATICA CODE FOR FORCED VIBRATION ANALYSIS 

 
ClearAll; 
(*input*) 
fs1x = 7.071; 
fs1y=-7.071; 
fs2y=-10; 
tf=1.5; 
ωωωω11 = 5.99; 
ωωωω12 = 12.08; 
ωωωω13 = 16.45; 
ωωωω14 = 35.00; 
ωωωω15 = 43.12; 
ωωωω16 = 47.08; 
ωωωω17 = 75.0; 
ωωωω21= 11.09; 
ωωωω22 = 21.77; 
ωωωω23 = 24.88; 
ωωωω24 = 32.76; 
ωωωω25 = 41.99; 
ωωωω26 = 47.93; 
ωωωω27 = 60.22; 
(*Stiffness Terms*) 
αααα=0.0007812; 
ββββ=0.0007812; 
k1=115*12; 
(*k1=1612.5 
k2=1612.5 
k3=1612.5 
k4=1612.5*) 
k3=120*12; 
k2=110*12; 
k4=105*12; 
(*k1=105*12; 
k2=125*12; 
k3=110*12; 
k4=115*12;*) 
ks1 = 3689.27; 
ks2=3689.27; 
mp=4.658; 
ma=0.155;(*m1*) 
mj=0.078;(*m2*) 
ml= 0.100;(*m3*) 
ml2=0.233;(*m4*) 
mts1= 0.086335; 
mts2= 0.086335; 
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mbs1= 0.098447; 
mbs2= 0.098447; 
(*mp=1.310488015;*) 
mtotal=ma+mj+ml+ml2+mts1+mts2+mbs1+mbs2+mp; 
(*xl = 0.0 ; 
zl = 0.0;  
yl= 0.0; 
xl2 = 0.0;  
zl2 = 0.0; 
yl2 = 0.0; 
xa =0.0; 
za = 0.0; 
ya = 0.0; 
xj =0.0; 
zj = 0.0; 
yj = 0.0;*) 
 
xl = -15/12; (*(6/7)*(1/2)*lplate;*) 
zl = -15/12; (*(6/7)*(1/2)*wplate;*) 
yl= (1/2)*hplate+0.333; 
xl2 = 6/12; (*(6/7)*(1/2)*lplate;*) 
zl2 = -6/12; (*(6/7)*(1/2)*wplate;*) 
yl2 = (1/2)*hplate+0.333; 
xa =9/12; 
za = 9/12; 
ya = (1/2)*hplate+0.333; 
xj =-12/12; 
zj = 12/12; 
yj = (1/2)*hplate+0.333; 
 
xs1 =0; (*(6/7)*(1/2)*lplate;*) 
zs1 =-(2/7)*(1/2)*wplate; 
ys1 =(1/2)*hplate+0.333; 
 
xs2 = -(2/7)*(1/2)*lplate; 
zs2 =0 
ys2 =(1/2)*hplate+0.333; 
 
xbs1 =0; (*(6/7)*(1/2)*lplate;*) 
zbs1 =-(2/7)*(1/2)*wplate; 
ybs1 =(1/2)*hplate; 
 
xbs2 =-(2/7)*(1/2)*lplate; 
zbs2 =0 
ybs2 =(1/2)*hplate; 
 
lplate=36/12; 
wplate=36/12; 
hplate = 2/12; 
Ixx =(mp/12)*(lplate^2+hplate^2); 
Izz = (mp/12)*(wplate^2+hplate^2); 
Iyy = (mp/12)*(lplate^2+wplate^2); 
Ixz = 0;  
Ixy = 0; 
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Iyz = 0; 
zbar = 0; 
xbar = 0; 
ybar = 0; 
lspring=17.25/12; 
wspring = 17.25/12; 
hspring = (1/2)*hplate; 
z1 = lspring; 
y1  = -hspring; 
x1 = wspring; 
z2 = lspring; 
y2 = -hspring; 
x2 = -wspring; 
z3 = -lspring; 
y3 = -hspring; 
x3 = -wspring; 
z4 = -lspring; 
y4 = -hspring; 
x4 = wspring; 
position={us1[t],vs1[t],vs2[t],u0[t],v0[t],w0[t], θθθθx[t], θθθθy[t], θθθθz[t
]}; 
velocity={us1'[t],vs1'[t],vs2'[t],u0'[t],v0'[t],w0'[t], θθθθx'[t], θθθθy'
[t], θθθθz'[t]}; 
acceleration={us1''[t],vs1''[t],vs2''[t],u0''[t],v0''[t],w0''[t],
θθθθx''[t], θθθθy''[t], θθθθz''[t]}; 
(*force={fs1x*Sin[ ωωωω1*t],fs1y*Sin[ ωωωω1*t],fs2y*Sin[ ωωωω2*t],fs2z*Sin[ ωωωω
2*t],0,0,0,0,0,0};*) 
F={fs1x*(Sin[ ωωωω11*t]+Sin[ ωωωω12*t]+Sin[ ωωωω13*t]+Sin[ ωωωω14*t]+Sin[ ωωωω15*t]+
Sin[ ωωωω16*t]+Sin[ ωωωω17*t]),fs1y*(Sin[ ωωωω11*t]+Sin[ ωωωω12*t]+Sin[ ωωωω13*t]+Si
n[ ωωωω14*t]+Sin[ ωωωω15*t]+Sin[ ωωωω16*t]+Sin[ ωωωω17*t]),fs2y*(Sin[ ωωωω21*t]+Sin[
ωωωω22*t]+Sin[ ωωωω23*t]+Sin[ ωωωω24*t]+Sin[ ωωωω25*t]+Sin[ ωωωω26*t]+Sin[ ωωωω27*t]),0
,0,0,0,0,0} 
B={{1,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0},{0,0,1,0,0,0,0,0,0},{0
,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0},{0,0,0,
0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0
,0,0,0}}; 
KE1=(1/2)*mts1*((us1'[t])^2+(vs1'[t])^2); 
KE2=(1/2)*mts2*((vs2'[t])^2); 
(* Kinetic Energy of the Moving Masses of Actuators*)  
( *  Potential Energy of the Springs Attached to Actuato rs*)  
PE1=(ks1/2)*((us1[t]-(u0[t]+zs1* θθθθy[t]-ys1* θθθθz[t]))^2+(vs1[t]-
(v0[t]-zs1* θθθθx[t]+xs1* θθθθz[t]))^2+(w0[t]-xs1* θθθθy[t]+ys1* θθθθx[t])^2); 
PE2=(ks2/2)*((u0[t]+zs2* θθθθy[t]-ys2* θθθθz[t])^2+(vs2[t]-(v0[t]-
zs2* θθθθx[t]+xs2* θθθθz[t]))^2+((w0[t]-xs2* θθθθy[t]+ys2* θθθθx[t]))^2); 
(* Potential Energy of the Springs Attached to Actuato rs*)  
(* Potential Energy of the Springs Attached to Actuato rs*)  
RD1=(cs1/2)*((us1'[t]-(u0'[t]+zs1* θθθθy'[t]-y1* θθθθz'[t]))^2+(vs1'[t]-
(v0'[t]-zs1* θθθθx'[t]+xs1* θθθθz'[t]))^2+(w0'[t]-
xs1* θθθθy'[t]+ys1* θθθθx'[t])^2); 
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RD2=(cs2/2)*((u0'[t]+zs2* θθθθy'[t]-ys2* θθθθz'[t])^2+(vs2'[t]-(v0'[t]-
zs2* θθθθx'[t]+xs2* θθθθz'[t]))^2+((w0'[t]-xs2* θθθθy'[t]+ys2* θθθθx'[t]))^2); 
(* Potential Energy of the Springs Attached to Actuato rs*)  
KE=(ml/2)*((u0'[t]+zl* θθθθy'[t]-yl* θθθθz'[t])^2+(v0'[t]-
zl* θθθθx'[t]+xl* θθθθz'[t])^2+(w0'[t]-xl* θθθθy'[t]+yl* θθθθx'[t])^2)+ 
   (ml2/2)*((u0'[t]+zl2* θθθθy'[t]-yl2* θθθθz'[t])^2+(v0'[t]-
zl2* θθθθx'[t]+xl2* θθθθz'[t])^2+(w0'[t]-xl2* θθθθy'[t]+yl2* θθθθx'[t])^2)+ 
   (mj/2)*((u0'[t]+zj* θθθθy'[t]-yj* θθθθz'[t])^2+(v0'[t]-
zj* θθθθx'[t]+xj* θθθθz'[t])^2+(w0'[t]-xj* θθθθy'[t]+yj* θθθθx'[t])^2)+ 
   (ma/2)*((u0'[t]+za* θθθθy'[t]-ya* θθθθz'[t])^2+(v0'[t]-
za* θθθθx'[t]+xa* θθθθz'[t])^2+(w0'[t]-xa* θθθθy'[t]+ya* θθθθx'[t])^2)+ 
   (mbs1/2)*((u0'[t]+zbs1* θθθθy'[t]-ybs1* θθθθz'[t])^2+(v0'[t]-
zbs1* θθθθx'[t]+xbs1* θθθθz'[t])^2+(w0'[t]-xbs1* θθθθy'[t]+ybs1* θθθθx'[t])^2)+ 
   (mbs2/2)*((u0'[t]+zbs2* θθθθy'[t]-ybs2* θθθθz'[t])^2+(v0'[t]-
zbs2* θθθθx'[t]+xbs2* θθθθz'[t])^2+(w0'[t]-xbs2* θθθθy'[t]+ybs1* θθθθx'[t])^2)+ 
   
(mp/2)*((u0'[t])^2+(v0'[t])^2+(w0'[t])^2)+mp*xbar*(v0'[t]* θz'[t]-
w0'[t]* θy'[t])+mp*zbar*(u0'[t]* θy'[t]-
v0'[t]* θx'[t])+(1/2)*(Iyy*( θy'[t])^2+Ixx*( θx'[t])^2+Izz*( θz'[t])^
2)-Ixz* θx'[t]* θz'[t]; 
PE=(k1/2)*((u0[t]+z1* θθθθy[t]-y1* θθθθz[t])^2+(v0[t]-
z1* θθθθx[t]+x1* θθθθz[t])^2+(w0[t]-
x1* θθθθy[t]+y1* θθθθx[t])^2)+(k2/2)*((u0[t]+z2* θθθθy[t]-y2* θθθθz[t])^2+(v0[t]-
z2* θθθθx[t]+x2* θθθθz[t])^2+(w0[t]-
x2* θθθθy[t]+y2* θθθθx[t])^2)+(k3/2)*((u0[t]+z3* θθθθy[t]-y3* θθθθz[t])^2+(v0[t]-
z3* θθθθx[t]+x3* θθθθz[t])^2+(w0[t]-
x3* θθθθy[t]+y3* θθθθx[t])^2)+(k4/2)*((u0[t]+z4* θθθθy[t]-y4* θθθθz[t])^2+(v0[t]-
z4* θθθθx[t]+x4* θθθθz[t])^2+(w0[t]-x4* θθθθy[t]+y4* θθθθx[t])^2); 
(* Potential Energy of the Springs Attached to Plate*) 
(* Rayleigh Dissipation Energy of the Dampers Attached to Plate*) 
RD=(c1/2)*((u0'[t]+z1* θθθθ'y[t]-y1* θθθθz'[t])^2+(v0'[t]-
z1* θθθθx'[t]+x1* θθθθz'[t])^2+(w0'[t]-
x1* θθθθy'[t]+y1* θθθθx'[t])^2)+(c2/2)*((u0'[t]+z2* θθθθy'[t]-
y2* θθθθz'[t])^2+(v0'[t]-z2* θθθθx'[t]+x2* θθθθz'[t])^2+(w0'[t]-
x2* θθθθy'[t]+y2* θθθθx'[t])^2)+(c3/2)*((u0'[t]+z3* θθθθy'[t]-
y3* θθθθz'[t])^2+(v0'[t]-z3* θθθθx'[t]+x3* θθθθz'[t])^2+(w0'[t]-
x3* θθθθy'[t]+y3* θθθθx'[t])^2)+(c4/2)*((u0'[t]+z4* θθθθy'[t]-
y4* θθθθz'[t])^2+(v0'[t]-z4* θθθθx'[t]+x4* θθθθz'[t])^2+(w0'[t]-
x4* θθθθy'[t]+y4* θθθθx'[t])^2); 
eqn[i_]:=D[D[(KE1+KE2+KE),velocity[[i]]],t]-
D[(KE1+KE2+KE),position[[i]]]+D[(RD1+RD2+RD),velocity[[i]]]+D[(PE
1+PE2+PE),position[[i]]]; 
Stiffness=Table[Coefficient[eqn[j],position[[k]]],{k,9},{j,9}]; 
Mass=Table[Coefficient[eqn[j],acceleration[[k]]],{k,9},{j,9}]; 
Damping=Table[ αααα*Mass[[j,k]]+ ββββ*Stiffness[[j,k]],{k,9},{j,9}]; 
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L=Chop[CholeskyDecomposition[Mass]]; 
MD1=Inverse[Transpose[L]].Mass.Inverse[L]; 
KD1=Inverse[Transpose[L]].Stiffness.Inverse[L]; 
CD1=Inverse[Transpose[L]].Damping.Inverse[L]; 
FD1=Chop[Inverse[Transpose[L]].F]; 
vecs=Chop[Eigenvectors[KD1]]; 
P=Transpose[vecs]; 
Ptranspose = vecs; 
S=Inverse[L].P; 
KD2 =Chop[Ptranspose.KD1.P]; 
MatrixForm[%]; 
MD2 =Chop[Ptranspose.MD1.P]; 
MatrixForm[%]; 
CD2 =Chop[Ptranspose.CD1.P]; 
MatrixForm[%]; 
FD2=Chop[Simplify[Ptranspose.FD1]] 
MatrixForm[%]; 
particular11=Table[Coefficient[FD2[[j]],Sin[ ωωωω11*t]],{j,9}]; 
particular12=Table[Coefficient[FD2[[j]],Sin[ ωωωω12*t]],{j,9}]; 
particular13=Table[Coefficient[FD2[[j]],Sin[ ωωωω13*t]],{j,9}]; 
particular14=Table[Coefficient[FD2[[j]],Sin[ ωωωω14*t]],{j,9}]; 
particular15=Table[Coefficient[FD2[[j]],Sin[ ωωωω15*t]],{j,9}]; 
particular16=Table[Coefficient[FD2[[j]],Sin[ ωωωω16*t]],{j,9}]; 
particular17=Table[Coefficient[FD2[[j]],Sin[ ωωωω17*t]],{j,9}]; 
MatrixForm[%]; 
particular21=Table[Coefficient[FD2[[j]],Sin[ ωωωω21*t]],{j,9}]; 
particular22=Table[Coefficient[FD2[[j]],Sin[ ωωωω22*t]],{j,9}]; 
particular23=Table[Coefficient[FD2[[j]],Sin[ ωωωω23*t]],{j,9}]; 
particular24=Table[Coefficient[FD2[[j]],Sin[ ωωωω24*t]],{j,9}]; 
particular25=Table[Coefficient[FD2[[j]],Sin[ ωωωω25*t]],{j,9}]; 
particular26=Table[Coefficient[FD2[[j]],Sin[ ωωωω26*t]],{j,9}]; 
particular27=Table[Coefficient[FD2[[j]],Sin[ ωωωω27*t]],{j,9}]; 
MatrixForm[%]; 
vals=Chop[Eigenvalues[KD1]]; 
ωωωωn=Sqrt[vals]; 
ζζζζ=( αααα/(2* ωωωωn))+( ββββ* ωωωωn)/2; 
ωωωωd=Table[ ωωωωn[[j]]*Sqrt[1- ζζζζ[[j]]],{j,9}]; 
fn=Sqrt[vals]/(2*Pi); 
fd= ωωωωd/(2*Pi); 
{23.71629340343848` (Sin[11.09` t]+Sin[21.77` t]+Sin[24.88` 
t]+Sin[32.76` t]+Sin[41.99` t]+Sin[47.93` t]+Sin[60.22` 
t])+12.176380963697648` (Sin[5.99` t]+Sin[12.08` t]+Sin[16.45` 
t]+Sin[35.` t]+Sin[43.12` t]+Sin[47.08` t]+Sin[75.` 
t]),0.47429779935456384` (Sin[11.09` t]+Sin[21.77` t]+Sin[24.88` 
t]+Sin[32.76` t]+Sin[41.99` t]+Sin[47.93` t]+Sin[60.22` 
t])+28.545273262255563` (Sin[5.99` t]+Sin[12.08` t]+Sin[16.45` 
t]+Sin[35.` t]+Sin[43.12` t]+Sin[47.08` t]+Sin[75.` t]),-
23.912619107296337` (Sin[11.09` t]+Sin[21.77` t]+Sin[24.88` 
t]+Sin[32.76` t]+Sin[41.99` t]+Sin[47.93` t]+Sin[60.22` 



 80 

t])+13.049440953020028` (Sin[5.99` t]+Sin[12.08` t]+Sin[16.45` 
t]+Sin[35.` t]+Sin[43.12` t]+Sin[47.08` t]+Sin[75.` t]),-
0.055967219247049844` (Sin[11.09` t]+Sin[21.77` t]+Sin[24.88` 
t]+Sin[32.76` t]+Sin[41.99` t]+Sin[47.93` t]+Sin[60.22` t])-
1.511881440302727` (Sin[5.99` t]+Sin[12.08` t]+Sin[16.45` 
t]+Sin[35.` t]+Sin[43.12` t]+Sin[47.08` t]+Sin[75.` 
t]),2.2775481852129817` (Sin[11.09` t]+Sin[21.77` t]+Sin[24.88` 
t]+Sin[32.76` t]+Sin[41.99` t]+Sin[47.93` t]+Sin[60.22` t])-
1.8192557459641425` (Sin[5.99` t]+Sin[12.08` t]+Sin[16.45` 
t]+Sin[35.` t]+Sin[43.12` t]+Sin[47.08` t]+Sin[75.` 
t]),0.31869739985449297` (Sin[11.09` t]+Sin[21.77` t]+Sin[24.88` 
t]+Sin[32.76` t]+Sin[41.99` t]+Sin[47.93` t]+Sin[60.22` t])-
0.08118442721821306` (Sin[5.99` t]+Sin[12.08` t]+Sin[16.45` 
t]+Sin[35.` t]+Sin[43.12` t]+Sin[47.08` t]+Sin[75.` t]),-
0.1684652471422208` (Sin[11.09` t]+Sin[21.77` t]+Sin[24.88` 
t]+Sin[32.76` t]+Sin[41.99` t]+Sin[47.93` t]+Sin[60.22` 
t])+0.828263591485338` (Sin[5.99` t]+Sin[12.08` t]+Sin[16.45` 
t]+Sin[35.` t]+Sin[43.12` t]+Sin[47.08` t]+Sin[75.` 
t]),0.23605585449666983` (Sin[11.09` t]+Sin[21.77` t]+Sin[24.88` 
t]+Sin[32.76` t]+Sin[41.99` t]+Sin[47.93` t]+Sin[60.22` 
t])+3.008949946399901` (Sin[5.99` t]+Sin[12.08` t]+Sin[16.45` 
t]+Sin[35.` t]+Sin[43.12` t]+Sin[47.08` t]+Sin[75.` 
t]),4.289741825716503` (Sin[11.09` t]+Sin[21.77` t]+Sin[24.88` 
t]+Sin[32.76` t]+Sin[41.99` t]+Sin[47.93` t]+Sin[60.22` 
t])+3.087057744212988` (Sin[5.99` t]+Sin[12.08` t]+Sin[16.45` 
t]+Sin[35.` t]+Sin[43.12` t]+Sin[47.08` t]+Sin[75.` t])} 
(*Displacement Solution - Each solution will be a superposition 
of two solutions because od the two forcing functions*) 
X11=Table[particular11[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω11^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω11)^2],{n,1,9}]; 
θθθθ11=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω11)/( ωωωωn[[n]]^2-
ωωωω11^2)],{n,1,9}]; 
X12=Table[particular12[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω12^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω12)^2],{n,1,9}]; 
θθθθ12=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω12)/( ωωωωn[[n]]^2-
ωωωω12^2)],{n,1,9}]; 
X13=Table[particular13[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω13^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω13)^2],{n,1,9}]; 
θθθθ13=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω13)/( ωωωωn[[n]]^2-
ωωωω13^2)],{n,1,9}]; 
X14=Table[particular14[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω14^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω14)^2],{n,1,9}]; 
θθθθ14=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω14)/( ωωωωn[[n]]^2-
ωωωω14^2)],{n,1,9}]; 
X15=Table[particular15[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω15^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω15)^2],{n,1,9}]; 
θθθθ15=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω15)/( ωωωωn[[n]]^2-
ωωωω15^2)],{n,1,9}]; 
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X16=Table[particular16[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω16^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω16)^2],{n,1,9}]; 
θθθθ16=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω16)/( ωωωωn[[n]]^2-
ωωωω16^2)],{n,1,9}]; 
X17=Table[particular17[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω17^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω17)^2],{n,1,9}]; 
θθθθ17=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω17)/( ωωωωn[[n]]^2-
ωωωω17^2)],{n,1,9}]; 
X21=Table[particular21[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω21^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω21)^2],{n,1,9}]; 
θθθθ21=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω21)/( ωωωωn[[n]]^2-
ωωωω21^2)],{n,1,9}]; 
X22=Table[particular22[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω22^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω22)^2],{n,1,9}]; 
θθθθ22=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω22)/( ωωωωn[[n]]^2-
ωωωω22^2)],{n,1,9}]; 
X23=Table[particular23[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω23^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω23)^2],{n,1,9}]; 
θθθθ23=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω23)/( ωωωωn[[n]]^2-
ωωωω23^2)],{n,1,9}]; 
X24=Table[particular24[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω24^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω24)^2],{n,1,9}]; 
θθθθ24=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω24)/( ωωωωn[[n]]^2-
ωωωω24^2)],{n,1,9}]; 
X25=Table[particular25[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω25^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω25)^2],{n,1,9}]; 
θθθθ25=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω25)/( ωωωωn[[n]]^2-
ωωωω25^2)],{n,1,9}]; 
X26=Table[particular26[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω26^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω26)^2],{n,1,9}]; 
θθθθ26=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω26)/( ωωωωn[[n]]^2-
ωωωω26^2)],{n,1,9}]; 
X27=Table[particular27[[n]]/Sqrt[( ωωωωn[[n]]^2-
ωωωω27^2)^2+(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω27)^2],{n,1,9}]; 
θθθθ27=Table[ArcTan[(2* ζζζζ[[n]]* ωωωωn[[n]]* ωωωω27)/( ωωωωn[[n]]^2-
ωωωω27^2)],{n,1,9}]; 
rxp=Chop[Table[X11[[k]]*Sin[ ωωωω11*t+ θθθθ11[[k]]]+X12[[k]]*Sin[ ωωωω12*t+ θθθθ
12[[k]]]+ 
     
X13[[k]]*Sin[ ωωωω13*t+ θθθθ13[[k]]]+X14[[k]]*Sin[ ωωωω14*t+ θθθθ14[[k]]]+X15[[k
]]*Sin[ ωωωω15*t+ θθθθ15[[k]]]+X16[[k]]*Sin[ ωωωω16*t+ θθθθ16[[k]]]+X17[[k]]*Sin
[ ωωωω17*t+ θθθθ17[[k]]]+ 
     +X21[[k]]*Sin[ ωωωω21*t+ θθθθ21[[k]]]+X22[[k]]*Sin[ ωωωω22*t+ θθθθ22[[k]]]+ 
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X23[[k]]*Sin[ ωωωω23*t+ θθθθ23[[k]]]+X24[[k]]*Sin[ ωωωω24*t+ θθθθ24[[k]]]+X25[[k
]]*Sin[ ωωωω25*t+ θθθθ25[[k]]]+X26[[k]]*Sin[ ωωωω26*t+ θθθθ26[[k]]]+X27[[k]]*Sin
[ ωωωω27*t+ θθθθ27[[k]]],{k,1,9}]]; 
Sinverse=Ptranspose.L; 
 
 
xx=Chop[S.rxp]; 
us11=xx[[1]]; 
vs11=xx[[2]]; 
vs22=xx[[3]]; 
u0=xx[[4]]; 
v0=xx[[5]]; 
w0=xx[[6]]; 
φφφφx=xx[[7]]; 
φφφφy=xx[[8]]; 
φφφφz=xx[[9]]; 
plotfs1x=Plot[F[[1]],{t,0,tf},PlotStyle →→→→Thin,PlotRange →→→→All,Plot
Label →→→→Subscript["F",1],AxesLabel →→→→{secs,lb}]; 
plotfs1y=Plot[F[[3]],{t,0,tf},PlotStyle →→→→Thin,PlotRange →→→→All,Plot
Label →→→→Subscript["F",2],AxesLabel →→→→{secs,lb}]; 
plotfs2y=Plot[F[[3]],{t,0,tf},PlotStyle →→→→Thin,PlotRange →→→→All] 
Show[plotfs1x,plotfs1y,plotfs2y] 
plotu0=Plot[u0,{t,0,tf},PlotStyle →→→→Thin,PlotRange →→→→All,PlotLabel →→→→
Subscript[u,0],AxesLabel →→→→{secs,ft}] 
plotv0=Plot[v0,{t,0,tf},PlotStyle →→→→Thin,PlotRange-
>All,PlotLabel →→→→Subscript[v,0],AxesLabel →→→→{secs,ft}] 
plotw0=Plot[w0,{t,0,tf},PlotStyle →→→→Thin,PlotRange →→→→All,PlotLabel →→→→
Subscript[w,0],AxesLabel →→→→{secs,ft}] 
plot φφφφx=Plot[ φφφφx,{t,0,tf},PlotStyle →→→→Thin,PlotRange →→→→All,PlotLabel →→→→
Subscript[ θθθθ,x],AxesLabel →→→→{secs,rads}]; 
plot φφφφy=Plot[ φφφφy,{t,0,tf},PlotStyle →→→→Thin,PlotRange →→→→All,PlotLabel →→→→
Subscript[ θθθθ,y],AxesLabel →→→→{secs,rads}]; 
plot φφφφz=Plot[ φφφφz,{t,0,tf},PlotStyle →→→→Thin,PlotRange →→→→All,PlotLabel →→→→
Subscript[ θθθθ,z],AxesLabel →→→→{secs,rads}]; 
Show[GraphicsArray[{{plotu0,plot φx},{plotv0,plot φy},{plotw0,plot φ
z}}]]  


